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Abstract A least-squares spectral collocation scheme for the incompressible Navier–Stokes equations is
proposed. Grid refinement is performed by means of adaptive triangular elements. On each triangle the
Fekete nodes are employed for the collocation of the differential equation. On the element interfaces
continuity of the functions is enforced in the least-squares sense. Equal-order Dubiner polynomials are
used to obtain a stable spectral scheme. The collocation conditions and the interface conditions lead to
an overdetermined system that can be solved efficiently by least-squares. The solution technique only
involves symmetric positive-definite linear systems. The approach is first applied to the Poisson equation
and then extended to singular perturbation problems where least-squares have a stabilizing effect. By adap-
tivity, a suitable decomposition of the domain is found where the boundary layer is well resolved. Finally,
the method is successfully applied to the regularized driven-cavity flow problem. Numerical simulations
confirm the high accuracy of the proposed spectral least-squares scheme.
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1 Introduction

Spectral methods [1–3] employ global polynomials for the numerical solution of differential equations.
Hence they give very accurate approximations for smooth solutions with relatively few degrees of freedom
(d.o.f). For analytical data exponential convergence can be achieved. A good review of these methods can
be found in the book [4]. Reference [5] shows the good performance of least-squares spectral-element
methods for incompressible flows with continuous analytical solutions. The spectral solution can exhibit
(small) jumps over the boundary interfaces. In [6] the above approach was extended to one-dimensional
singular perturbation problems where the least-squares collocation schemes promote stabilization. This
was already observed by Eisen and Heinrichs in earlier work [7]. After a suitable decomposition of the
domain, we were able to resolve the boundary layer (see [8, 9] for similar approaches).
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Here we extend this method to the two-dimensional case where a triangular decomposition of the
domain is employed. The main advantage of triangles is that, after an adaptive refinement, hanging
nodes and nonconforming elements (Mortar elements) are avoided (see [10] for a comprehensive review).
Our technique of adaptive mesh refinement is adopted from the finite-element implementation (see, e.g.,
[11, 12]). The next question is the spectral discretization on the triangles. In earlier approaches (see [13–16])
mapping techniques from the square to the triangle were used. Disadvantages are a large condition num-
ber and irregular distributions of collocation nodes. Other approaches [17–20] directly deal with finding
optimal interpolation nodes on the triangle. Reference [19] uses a second-order time-evolution method to
minimize an electrostatic energy function. References [17, 18, 20] investigate Fekete points that maximize
the determinant of the Vandermonde matrix. Here we also make use of the Fekete points. They were explic-
itly calculated in [20] and applied in [21] to spectral-element methods. For stability reasons, equal-order
Dubiner polynomials [22] as basis functions are employed (see [15] for a comprehensive review). On each
triangular element, we collocate the first-order system of differential equations. Continuity of the variables
at interfaces is enforced in the least-squares sense and not by virtue of the element assembly process. The
collocation conditions together with the interface conditions lead to an overdetermined system that can
be approximately solved by the least-squares method. We obtain symmetric and positive-definite systems
that can be efficiently solved by direct solvers with LU-factorization for sparse matrices. We recommend
the UMFPACK Routine from the MATLAB library [23, 24].

Our spectral least-squares method is first applied to elliptic problems. We consider the Poisson equation
and singular perturbation problems and observe a good performance of the adaptive grid refinement.
For stiff problems, we obtain a stable scheme that is able to resolve boundary layers with spectral accu-
racy. These techniques are then extended to the Stokes and Navier–Stokes equations. It is already known
from the finite-element case that the least-squares formulation of the Stokes [25–27] and Navier–Stokes
equations [28, 29] leads to symmetric and positive-definite algebraic systems. For spectral methods, it
is known that, if the velocity and the pressure are approximated by polynomials of the same degree,
eight spurious modes are introduced that lead to an unstable system (see [30]). A well-known compatible
approximating velocity–pressure pair is the so-called PN × PN−2 formulation of [31] and [32]. Refer-
ence [33] employs this technique for the splitting of the Stokes equations. Here, the velocity components
are approximated by polynomials in PN , and the pressure is approximated by two degrees lower-order
polynomials in PN−2. The resulting discrete system constitutes a saddle-point problem that is difficult to
solve numerically. Least-squares techniques offer theoretical and numerical advantages over the classical
methods.

Spectral least-squares methods for the Stokes equations were first introduced in [34, 35]. Spectral least-
squares for the Navier–Stokes equations were first presented in [36, 37], followed by [38]. In addition,
there is recent work [39] on discontinuous least-squares spectral-element methods in two dimensions for
incompressible flows with weak C1-regularity [39]. Reference [40] introduced least-squares collocation
schemes for the Navier–Stokes equations. Here, we extend these methods to a triangular decomposition of
the domain combined with adaptive mesh refinement. On each subdomain, a spectral scheme with Fekete
nodes is employed. In summary, our approach has the following advantages:

– Equal-order interpolation polynomials can be employed. It is still possible to vary the polynomial order
from element to element.

– Stability for singular perturbation problems [6, 7] and the Stokes or Navier–Stokes equations [34, 35, 38,
40, 41].

– Adaptivity and a posteriori error estimators.
– Direct or iterative solvers for positive-definite systems (e.g., Cholesky or conjugate gradient methods).

In Sect. 2, the spectral least-squares scheme for elliptic problems is introduced. In Sect. 3, the adaptive
mesh refinement is described and the implementation is discussed. Finally, a conclusion is presented.
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2 The spectral least-squares scheme

We first introduce the spectral (partial) derivatives on T defined by

T = {(x, y): x ≥ −1, y ≥ −1, x + y ≤ 0}.
For triangles, the usual choice for interpolation base is a triangular truncation of polynomials, spanned by
the monomials

{xmyn, m + n ≤ N}.
The polynomial subspace spanned by these monomials is denoted by PN with dim PN = (N + 1)(N + 2)/2.
Since monomials yield very bad condition numbers for the Vandermonde matrix, it is practically useful to
choose the Dubiner basis functions [22] given by

φmn(x, y) = Lm

(
2

1 + x
1 − y

− 1
)
(1 − y)mP2m+1,0

n (y), m + n ≤ N,

defined with respect to the Legendre polynomials Lm = P0,0
m and the Jacobi polynomials P2m+1,0

n . The
Dubiner basis is orthogonal in the triangle and hence leads to a well-conditioned Vandermonde matrix.
[20] obtained for the Fekete points (see Fig. 1 for the Fekete points on a equilateral triangle) a MATLAB
reported condition number of less than 50 (for N ≤ 19). For given nodes,

(xij, yij), 0 ≤ i + j ≤ N,

and basis functions φmn, the Vandermonde matrix V = (vij,mn) is given by

vij,mn = φmn(xij, yij), i + j ≤ N, m + n ≤ N.
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Fig. 1 Fekete points on the equilateral triangle for N = 3, 6, 9, 12
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The Vandermonde matrix encapsulates the interpolation data at the above nodes. Now the Fekete points
are determined by maximizing the determinant of the Vandermonde matrix. These points were approxi-
mately calculated by [20] using a modified steepest-ascent method. The spectral (partial) derivatives can
be derived by first calculating the Dubiner expansion, and then taking partial derivatives, i.e.,

Dx = UxV−1, Dy = UyV−1,

where

Ux =
(
∂

∂x
φmn(xij, yij)

)
, Uy =

(
∂

∂y
φmn(xij, yij)

)
.

For given N, these derivatives on T are calculated once at the beginning of the program. For spectral
derivatives on general triangles T̂ we use an affine transformation, i.e.,

x̂ = r1 + r2x + r3y, ŷ = s1 + s2x + s3y,

where the coefficients are determined by mapping the three corners of T onto the vertices of T̂. Now the
partial derivatives transform as follows:

Dx̂ = 1
r2s3 − s2r3

(
s3Dx − s2Dy

)
, Dŷ = 1

r2s3 − s2r3

(−r3Dx + r2Dy
)

.

These partial derivatives are also used for calculating normal derivatives along the edges of the triangles.
Now we are able to write the spectral least-squares scheme for elliptic problems.

We consider the Poisson equation with Dirichlet boundary conditions

−�u = f in Ω = (0, 1)2 (1)

u = g on ∂Ω. (2)

Equation 1 is split into an equivalent first-order system given by

ux − v1 = 0, (3)

uy − v2 = 0, (4)

−v1,x − v2,y = f (5)

with the above Dirichlet boundary conditions (2) for u. For the finite-element method, the optimal splitting
(see, e.g., [42, p. 102]) is given by

∇ × v = 0, −∇ • v = f .

In this formulation, v ∈ H1(Ω) makes for a stronger convergence. For the collocation method, it is not
clear that the latter formulation is optimal, and hence we return to the conventional formulation. For a
given triangulation of the domain, we approximate the partial derivatives on each triangle by means of the
above spectral operators, Dx, Dy. The collocation equations can be written as

(ux − v1) (x̂ij, ŷij) = 0,
(
uy − v2

)
(x̂ij, ŷij) = 0, − (

v1,x + v2,y
)
(x̂ij, ŷij) = f (x̂ij, ŷij),

where (x̂ij, ŷij) are the collocation nodes on the triangle T̂ for 0 ≤ i + j ≤ N. Thus, we obtain for the above
system 3(N + 1)(N + 2)/2 collocation conditions which is identical to the number of unknowns in our
system. Additionally, Dirichlet boundary conditions and continuity along element interfaces are enforced
pointwise. From [17] it is known that the points along the boundary of the triangles are the standard one-
dimensional Gauss–Lobatto nodes mapped onto the edge, say (ξi, ηi), i = 0, . . . , N. Hence, on an interface
we require, for instance,

ũ(ξi, ηi) = û(ξi, ηi), i = 0, . . . , N,

where ũ and û are approximations from different triangular elements sharing the same edge. These inter-
face conditions are also explicitly written for the functions v1, v2. Hence at the Gauss–Lobatto points (on
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each edge of the triangle) the spectral approximations should attain the same values (pointwise continu-
ity!). The collocation conditions and the boundary/interface conditions are written into a matrix A and
compiled into an overdetermined system Az = r which is efficiently solved by least-squares. By minimizing

||Az − r||2,w = min!
in the weighted discrete L2-norm we obtain the normal equations

AT�A z = AT� r,

where � is a diagonal matrix containing the quadrature weights. Here we choose w ≡ 1 and hence �
is the identity matrix. The solution technique only involves symmetric positive-definite algebraic systems
which allow the use of equal-order interpolation polynomials on all subdomains. Direct solvers for sparse
matrices or robust iterative solvers such as (preconditioned) conjugate-gradient methods can be employed.

In the finite-element least-squares approach (e.g., by Gerritsma), there is a minimization of the least-
squares functional written in L2

w-norms. It is rewritten in a variational setting and evaluated by integration
quadrature rules. In the collocation approach, we first write the collocation (pointwise) equations for the
first-order system. The equations are implemented by interface and boundary conditions. The resulting
overdetermined algebraic system is solved by means of the normal equations. For the finite-element least-
squares the interface conditions are enforced in a variational setting. Hence, with the LSFEM the Sobolev
errors are directly controlled, whereas in the collocation framework the only apparent control is in L∞.

3 Adaptive mesh refinement

On each triangular element we evaluate an a-posteriori error indicator based on the H1-norm. In particular,
we refine when solution gradients are large, i.e., we require

||∇u(k)|| ≤ ε||uh||1 (6)

everywhere on the mesh, where u(k) denotes the approximate solution on the kth element. Here || · ||
denotes the discrete L2 norm, || · ||1 the discrete H1 norm, and ε is a given discretization tolerance. In the
later applications, we choose ε = 0.03. This is a common refinement criterion in cases where no alternative
measure of solution errors is available. In the least-squares variational setting, an a-posteriori error esti-
mator is available through the least-squares functional itself. This yields a sharp and cheap measure for the
local error. In the collocation approach (which is a pointwise method), this measure is not directly available
without any further computations. One additionally has to compute the local error on each element. The
costs are comparable to our error indicator.

For spectral methods, there exist other refinement strategies which are based on the decay of the coeffi-
cients in the polynomial expansion. A good survey on these methods can be taken from the review article
[10]. From the discussion in [10] it is not clear that the other error indicators yield better results. Hence,
for simplicity, we refer to the refinement criteria (6). In case it is not fulfilled, the corresponding triangle
is refined as in the finite-element method. This means that all three edges are halved and the element is
subdivided into four new sub-triangles. A more detailed review on these techniques can be found in the
finite-element literature (see, e.g., [11] or [12]).

4 Numerical results

We have calculated the maximal errors over all elements, i.e.,

||u − uh||, ||u − uh||1
in the discrete L2 and H1 norm. First, we consider a smooth solution given by
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Table 1 Numerical results for example (7)

N ||u − uh|| ||u − uh||1 Conv. rates #el. d.o.f.

3 1.63 × 10−1 5.93 × 100 — 32 3 × 320
6 3.51 × 10−3 2.12 × 10−1 4.81 32 3 × 896
9 3.79 × 10−4 3.85 × 10−2 4.21 32 3 × 1760
12 1.65 × 10−7 1.62 × 10−5 27.02 32 3 × 2912

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4
0.6 0.8 1

0
0.2

0.4
0.6

0.8
1

–1

0

1

Fig. 2 3D-Plot and grid for example (7)
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Fig. 3 H1-error versus d.o.f. for example (7)

u(x, y) = sin 4πx sin 4πy. (7)

In Table 1, we observe the high accuracy of our spectral least-squares scheme. The convergence rates in N
(approximately given by the logarithm of the quotient between the errors in the H1 norm divided by the
logarithm of the quotient between step sizes in N), remain nearly constant for N = 6, 9. From N = 9 to
N = 12, there is a jump in convergence speed since now the polynomial approximation is able to resolve
the pronounced oscillation of the solution u. In Fig. 2 we plot the approximate solution and the adaptive
grid after one step of refinement. We start with a regular grid of eight elements, where all elements are
refined. Hence, we obtain a triangulation with 32 elements. The high spectral accuracy can also be seen
from Fig. 3 where we plot the H1-error versus the d.o.f. In the second example we consider the Poisson
equation for a solution that has a steep gradient in the corner (0, 0), given by

u(x, y) = exp(−α(x + y)), (8)

where α = 100. Numerical results for N = 3, 6 are given in Table 2. The convergence rates are defined with
respect to N. Due to the corner singularity the convergence rate is only slightly increasing. Here we also
present the number of grid refinements (#ref.) and number of collocation conditions (#coll.). The colloca-
tion conditions result from collocating the system (3–5) and then requiring boundary/interface conditions
on each triangular element. The d.o.f are three times the number of collocation nodes due to the functions
u, v1, v2. The number of collocation nodes is given by the number of nodes on each triangular element,
i.e., (N + 1)(N + 2)/2, multiplied by the number of elements. Obviously, there are more collocation condi-
tions than d.o.f and hence we obtain an overdetermined system. The well-adapted local grid for N = 3 after
seven levels of refinement is displayed in Fig. 4. In Fig. 5 we give an error plot in the discrete H1-norm for
N = 6 and 3,4 resp. 5 steps of refinement. The error is plotted on the line y = x showing a strong increase
near the singularity. We consider two additional examples introduced by [43] for a numerical coordinate
transformation based on adaptivity. First we once more solve the Poisson problem with
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Table 2 Numerical results for examples (8)–(10)

Ex. N ||u − uh|| ||u − uh||1 Conv. rates #ref. #el. #coll. d.o.f.

(8) 3 1.34 × 10−4 1.06 × 10−1 – 7 206 8652 6180
6 2.56 × 10−5 1.38 × 10−2 2.94 5 48 5040 4032

(9) 3 5.23 × 10−3 3.76 × 10−1 – 5 1016 42672 30480
6 4.61 × 10−5 9.20 × 10−3 5.35 3 340 35700 28560

(10) 3 2.17 × 10−1 2.84 × 100 – 4 1465 61530 43950
6 3.58 × 10−6 7.75 × 10−4 11.84 3 450 47250 37800
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Fig. 4 3D-Plot and grid for example (8)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10–1

10–2

10–3

10–4

10–5

10–6

10–7

10
0

3 steps of ref. 
4 steps of ref. 
5 steps of ref. 

Fig. 5 H1-error profile at y = x

u(x, y) = tanh

[
1
ε

(
1

16
−

(
x − 1

2

)2

−
(

y − 1
2

)2
)]

. (9)

For small ε, this function resembles a top hat with a front located on the circle (x−1/2)2+(y−1/2)2 = 1/16.
Here we choose ε = 0.05. Numerical results are given in Table 2, the 3D-Plot and the most refined grid are
displayed in Fig. 6. We finally consider a convection-diffusion problem where (5) reads as:

−ε (
v1,x + v2,y

) + v1 = f ,

where

f (x, y) = εω2
[
1 − e(x−1)/ε)

]
sinωy

with boundary conditions corresponding to the exact solution

u(x, y) =
[
1 − e(x−1)/ε)

]
sinωy. (10)

Here, ω and ε are prescribed positive constants with ε << 1. In our computations, we choose ω = π and
ε = 0.05. The exact solution has a steep front along the line x = 1 whose gradient is independent of y.
Table 2 contains the numerical results plotted in Fig. 7. Obviously, the least-squares scheme yields a stable
method for the solution of this convection-diffusion problem. For one-dimensional singular perturbation
problems this was already observed in [6]. Here this can be observed from Fig. 8 where we plot the
exact versus the numerical solution (N = 6) at y = 0.5 for 0 and 1 steps of refinement. We start with a
regular decomposition of eight triangular elements. Without refinement we observe (as expected) a jump
at x = 0.5.



344 J Eng Math (2006) 56:337–350

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4
0.6 0.8 1

0
0.2

0.4
0.6

0.8
1

–1

0

1

Fig. 6 3D-Plot and grid for example (9)
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Fig. 7 3D-Plot and grid for example (10)

For all examples, we also present convergence rates, number of elements, number of collocation con-
ditions and d.o.f. It is interesting to note that for N = 6 we have fewer degrees of freedom with much
higher accuracy. Hence for the numerical computation we recommend N = 6. Because of the singular
behavior of the solutions, numerical tests show that it does not pay off to use higher-degree polynomials.
Furthermore, we observe that the number of total collocation conditions is about 25% higher than degrees
of freedom. Since the systems are symmetric and positive definite, iterative solvers like (preconditioned)
conjugate-gradient methods could be used, although they are not optimal. By numerical experiments we
found that it is much faster to employ some direct solver with LU-factorization for sparse (banded) matri-
ces. For instance, we recommend the UMFPACK Routine from the MATLAB 7.1 library developed by
Tim Davis, Univ. of Florida [23, 24].
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5 The Navier–Stokes equations

In order to apply the least-squares method, the Navier–Stokes problem is transformed into an equiva-
lent first-order system of partial differential equations. This is accomplished by introducing the vorticity
ω = ∇ × u as an auxiliary variable. By using the identity

∇ × ∇ × u = −�u + ∇(∇ · u),

and by using the incompressibility constraint ∇ · u = 0, we obtain
∂u
∂t

+ u · ∇u + ∇p + ν∇ × ω = f in Ω, (11)

∇ · u = 0 in Ω, (12)

ω − ∇ × u = 0 in Ω, (13)

where uT = [u, v] denotes the velocity vector, p the pressure, fT = [fu, fv] the forcing term, and ν the
kinematic viscosity. Here it is assumed that the density equals unity. Spectral least-squares methods for the
Stokes and Navier–Stokes equations were first introduced in [34, 35, 38, 41]. Reference [40] investigated
least-squares collocation schemes for the Navier–Stokes equations. Here we extend these methods to a
triangular decomposition of the domain combined with adaptive mesh refinement. Since our least-squares
method is stable for singular perturbation problems, it can be expected to work well for both explicit and
implicit time-integration schemes. As proposed in [38], we apply a θ -integration scheme in time combined
with the Picard linearization to the momentum equation of the unsteady Navier–Stokes equations. The
subscript “0” corresponds to the results obtained at a previous integration time step. Now the momentum
equation reads as follows:
u − u0

�t
+ θ (u0 · ∇u + ∇p + ν∇ × ω − f) (14)

= (θ − 1) (u0 · ∇u0 + ∇p0 + ν∇ × ω0 − f0) . (15)

By taking θ = 1, the time integration is carried out by the backward Euler method, which is only first-order
accurate in time. The second-order time integration of Crank–Nicolson can be obtained by setting θ = 1/2.
Since the Crank–Nicolson scheme has no damping, one often takes θ = 1/2 + O(�t). The temporal
accuracy remains second-order, and adding the small factor �t effectively dampens the small waves in
spectral-element simulations. Hence, in order to obtain time-accurate solutions, one should use θ =
1/2 + O(�t). The θ -scheme is unconditionally stable for 1/2 ≤ θ ≤ 1. Here we only consider station-
ary problems where it is recommended to use backward Euler (θ = 1) with a large time step to obtain
steady-state solutions. Now the complete system for each time step can explicitly be written as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
�t

+ θu0
∂

∂x
+ θv0

∂

∂y
0 θν

∂

∂y
θ
∂

∂x

0
1
�t

+ θu0
∂

∂x
+ θv0

∂

∂y
−θν ∂

∂x
θ
∂

∂y
∂

∂y
− ∂

∂x
1 0

∂

∂x
∂

∂y
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

u
v
ω

p

⎤
⎥⎥⎦ = F,

where

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

fu + u0

�t
+ (θ − 1)

{
u0
∂u0

∂x
+ v0

∂u0

∂y
+ ν

∂ω0

∂y
+ ∂p0

∂x

}

fv + v0

�t
+ (θ − 1)

{
u0
∂v0

∂x
+ v0

∂v0

∂y
− ν

∂ω0

∂x
+ ∂p0

∂y

}

0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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Table 3 Numerical results for examples (16–18)

N ||u − uh||1 ||v − vh||1 Conv. rates v ||p − ph|| Conv. rates p #el. d.o.f.

3 1.68 × 10−1 1.46 × 10−1 — 1.60 × 10−2 — 8 4 × 80
6 6.39 × 10−3 6.37 × 10−3 4.52 3.41 × 10−4 5.55 8 4 × 224
9 2.30 × 10−6 4.02 × 10−6 18.17 1.52 × 10−7 19.03 8 4 × 440
12 2.21 × 10−8 7.83 × 10−9 21.69 4.06 × 10−9 12.59 8 4 × 728

Table 4 The regularized cavity flow (19), Re = 100

N M1 M2 #el. #coll. d.o.f.

3 8.45 × 10−2 11.29 429 29900 17159
6 8.36 × 10−2 13.32 101 16513 11311
[45] 8.34 × 10−2 13.34 1 4802 4802

In the spectral scheme, all four functions u, v,ω, p are approximated by polynomials in PN . The partial
derivatives on triangles are calculated as before. At the interface between triangular elements, we require
continuity of both the functions and normal derivatives of u, v. For p we only require continuity and for
ω we do not explicitly require interface conditions. The above system of differential equations, together
with the boundary and interface conditions, leads to an overdetermined system that can be efficiently
solved by least squares. After eliminating the constant mode for the pressure, we obtain a symmetric and
positive-definite system.

We consider examples also treated in [44] for splitting schemes. First we introduce a smooth example
where the velocity components u, v and the pressure p are given by

u(x, y) = sin

(
π x̂
2

)
cos

(
π ŷ
2

)
, (16)

v(x, y) = − cos

(
π x̂
2

)
sin

(
π ŷ
2

)
, (17)

p(x, y) = 1
4

(
cosπ x̂ + cosπ ŷ

) + 10(x̂ + ŷ), (18)
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Fig. 8 2D cross-section plot at y = 0.5
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Fig. 10 Adapted grid for the regularized driven-cavity
flow 19)
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Fig. 11 Stream function for the regularized driven-cavity
flow (19)
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Fig. 12 Adapted grid for the regularized driven-cavity flow
(20)

Fig. 13 Velocity profile for the regularized cavity flow (20)

where x̂ = 2x−1, ŷ = 2y−1 are the coordinates in [−1, 1]. For a Reynolds number of Re = 1/ν = 100, we
calculated the discrete L2 and H1 errors on a triangular grid with 8 elements. For increasing N, we observe
from Table 3 and Fig. 9 high spectral accuracy. The convergence rates given for v and p show exponential
convergence. Furthermore, we consider the regularized cavity flow (see [44–46]) where the fluid velocity
on the edge y = 1 is given by
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Fig. 14 Stream function for the regularized cavity flow (20)

u(x, 1) = −16x2(1 − x)2, v(x, 1) = 0, (19)

where u = v = 0 at the other three edges. The source term f is identical to zero. After steady state is
reached, we also calculate the stream function ψ by solving the equation

�ψ = −ω in Ω = (0, 1)2.

Here we also employ the error estimator (6) where we take the arithmetic mean of both velocity com-
ponents. The refinement strategy is as before, and the error is balanced over the elements. On each level
of refinement, we iterate with the above time-integration scheme. In order to compare our results with
the results of [45], we calculated the maximal value of ψ on the collocation points of Ω, denoted by M1.
Furthermore, we computed the maximal value of ω on the edge y = 1. This value is denoted by M2. In
Table 4 we present results for Re = 100. Here we employed four steps of refinement for N = 3 and two
steps of refinement for N = 6. The adapted grid and the contour lines of the stream function (Re = 100) are
plotted in Figs. 10 and 11. The numerical results are in good agreement with results obtained in [45] where
the vorticity–stream-function formulation was considered with a Chebychev expansion of degree N = 48
on the unit square (one element). In the approach of Botella, there are only two unknown functions and
one element (N = 48), which results in 2 × 2, 401 d.o.f. For a similar accuracy, the least-squares approach
requires 101 elements (N = 6), which results in 4 × 2, 828 degrees of freedom. Hence for the regular-
ized cavity flow, the adaptive spectral least-squares approach is more expensive. But for more complex
geometries and singularities, our adaptive approach is more favorable. Furthermore, we solved a tougher
regularized problem where
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u(x, 1) =
{

tanh(βx) for 0 ≤ x ≤ 0.5,
− tanh(β(x − 1)) for 0.5 ≤ x ≤ 1

(20)

with β = 50. In Fig. 12 we present the adapted grid after four levels of refinement. In Figs. 13 and 14 we
show the velocity profile and the stream function. The results are in good agreement with the benchmarks
of Ghia and Ghia [47]. For more severe test cases (e.g., lid-driven-cavity flow with high Reynolds numbers)
our code has to be optimized and more efficient solvers have to be implemented. This will be the subject
of a future project.

6 Conclusion

A least-squares spectral collocation scheme for the incompressible Navier–Stokes equations has been pre-
sented. Grid refinement is performed by means of adapted triangular elements. On each triangle, Fekete
nodes are employed. The solution technique only involves symmetric positive-definite linear systems. The
method was successfully applied to some regularized driven-cavity-flow problems. Numerical simulations
confirm the high accuracy of the proposed spectral least-squares scheme.
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